◎ 로지스틱 회귀분석 로지스틱 회귀는 출력 변수를 직접 예측하는 것이 아니라, 두 개의 카테고리를 가지는 binary 형태의 출력 변수를 예측할 때 사용하는 회귀분석 방법 ◎ 로지스틱 회귀계수 추정 단순 선형회귀의 최소제곱법을 사용하는 것이 아닌 최대우도법을 사용 ◎ 회귀계수 축소법 ※ 분석용 데이터의 이상적 조건 독립변수 X 사이에 상관성이 작아야 이상적이다. 독립변수 X와 종속변수 Y의 상관성은 커야한다. 많은 양질의 데이터(결측치와 노이즈가 없는 깨끅한 데이터) 필요하다. ※ 회귀계수를 축소하는 이유 영향력이 없는 입력 변수의 계수를 0에 가깝게 가져간다면, 모형에 포함되는 입력 변수의 수를 줄일 수 있다. ○ 입력 변수의 수를 줄이면 세 가지 장점이 존재 잡은(noise)을 제거해 모형의 정확도를..