◎ Perceptron 하나의 뉴런 입력 데이터 혹은 다른 레이어의 출력물을 받아 결과값을 내는 구조 Input, weights, activation function (활성함수)로 구성 ※ Activation function(활성함수) 특징 : 연속, 비선형, 단조증가, bounded, 점근성의 특성 ※ Activation function(활성함수)의 필요성 : 은닉 layer를 의미 있게 쌓아주는 역할, 선형의 layer만 쌓인다면, 결국 하나의 선형식이 된다. 출력값의 range를 결정 ※ Input layer(입력층) : 입력 데이터를 의미 ※ Hidden layer : 입력 데이터 혹은 또는 다른 Hidden layer의 출력 값, 위의 입력값을 받는 perceptron들의 집합 ※ Output ..